Combining Artificial Neural Networks and Transrectal Ultrasound in the Diagnosis of Prostate Cancer

ثبت نشده
چکیده

Arguably the most important step in the prognosis of prostate cancer is early diagnosis. More than 1 million transrectal ultrasound (TRUS)guided prostate needle biopsies are performed annually in the United States, resulting in the detection of 200,000 new cases per year. Unfortunately, the urologist's ability to diagnose prostate cancer has not kept pace with therapeutic advances; currently, many men are facing the need for prostate biopsy with the likelihood that the result will be inconclusive. This paper will focus on the tools available to assist the clinician in predicting the outcome of the prostate needle biopsy. We will examine the use of "machine learning" models (artificial intelligence), in the form of artificial neural networks (ANNs), to predict prostate biopsy outcomes using prebiopsy variables. Currently, six validated predictive models are available. Of these, five are machine learning models, and one is based on logistic regression. The role of ANNs in providing valuable predictive models to be used in conjunction with TRUS appears promising. In the few studies that have compared machine learning to traditional statistical methods, ANN and logistic regression appear to function equivalently when predicting biopsy outcome. With the introduction of more complex prebiopsy variables, ANNs are in a commanding position for use in predictive models. Easy and immediate physician access to these models will be imperative if their full potential is to be realized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[Transrectal ultrasound in the diagnosis of prostate cancer].

Arguably the most important step in the prognosis of prostate cancer is early diagnosis. More than 1 million transrectal ultrasound (TRUS)-guided prostate needle biopsies are performed annually in the United States, resulting in the detection of 200,000 new cases per year. Unfortunately, the urologist's ability to diagnose prostate cancer has not kept pace with therapeutic advances; currently, ...

متن کامل

A review of neural network detection methods for breast cancer: review article

Breast cancer is the most common cancer among women and the earlier it is diagnosed, the easier it is to treat. The most common way to diagnose breast cancer is mammography. Mammography is a simple chest x-ray and a tool for early detection of non-palpable breast cancers and tumors. However, due to some limitations of this method such as low sensitivity especially in dense breasts, other method...

متن کامل

Application of Artificial Neural Networks in a Two-step Classification for Acute Lymphocytic Leukemia Diagnosis by Blood Lamella Images

Introduction: This study aimed to present a system based on intelligent models that can enhance the accuracy of diagnostic systems for acute leukemia. The three parts including preprocessing, feature extraction, and classification network are considered as associated series of actions. Therefore, any dysfunction or poor accuracy in each part might lead in general dysfunction of...

متن کامل

Pre-Operative Prediction of Advanced Prostatic Cancer Using Clinical Decision Support Systems: Accuracy Comparison between Support Vector Machine and Artificial Neural Network

OBJECTIVE The purpose of the current study was to develop support vector machine (SVM) and artificial neural network (ANN) models for the pre-operative prediction of advanced prostate cancer by using the parameters acquired from transrectal ultrasound (TRUS)-guided prostate biopsies, and to compare the accuracies between the two models. MATERIALS AND METHODS Five hundred thirty-two consecutiv...

متن کامل

Diagnosis Prediction of Lichen Planus, Leukoplakia and Oral Squamous Cell Carcinoma by using an Intelligent System Based on Artificial Neural Networks

Introduction: Diagnosis, prediction and control of oral lesions is usually done classically based on clinical signs and histopathologic features. Due to lack of timely diagnosis in all conventional methods or differential diagnosis, biopsy of patient is needed. Therefore, the patient might be irritated. So, an intelligent method for quick and accurate diagnosis would be crucial. Intelligent sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017